Categoricity from One Successor Cardinal in Tame Abstract Elementary Classes
نویسندگان
چکیده
We prove that from categoricity in λ we can get categoricity in all cardinals ≥ λ in a χ-tame abstract elementary classe K which has arbitrarily large models and satisfies the amalgamation and joint embedding properties, provided λ > LS(K) and λ ≥ χ. For the missing case when λ = LS(K), we prove that K is totally categorical provided that K is categorical in LS(K) and LS(K).
منابع مشابه
A Downward Categoricity Transfer for Tame Abstract Elementary Classes
We prove a downward transfer from categoricity in a successor in tame abstract elementary classes (AECs). This complements the upward transfer of Grossberg and VanDieren and improves the Hanf number in Shelah’s downward transfer (provided the class is tame). Theorem 0.1. Let K be an AEC with amalgamation. If K is LS(K)-weakly tame and categorical in a successor λ ≥ i(2LS(K))+ , then K is catego...
متن کاملShelah's categoricity conjecture from a successor for tame abstract elementary classes
We prove a categoricity transfer theorem for tame abstract elementary classes. Theorem 0.1. Suppose that K is a χ-tame abstract elementary class and satisfies the amalgamation and joint embedding properties and has arbitrarily large models. Let λ ≥ Max{χ,LS(K)}. If K is categorical in λ and λ, then K is categorical in λ. Combining this theorem with some results from [Sh 394], we derive a form o...
متن کاملBuilding independence relations in abstract elementary classes
We study general methods to build forking-like notions in the framework of tame abstract elementary classes (AECs) with amalgamation. We show that whenever such classes are categorical in a high-enough cardinal, they admit a good frame: a forking-like notion for types of singleton elements. Theorem 0.1 (Superstability from categoricity). Let K be a (< κ)-tame AEC with amalgamation. If κ = iκ > ...
متن کاملIndependence in abstract elementary classes
We study general methods to build forking-like notions in the framework of tame abstract elementary classes (AECs) with amalgamation. We show that whenever such classes are categorical in a high-enough cardinal, they admit a good frame: a forking-like notion for types of singleton elements. Theorem 0.1 (Superstability from categoricity). Let K be a (< κ)-tame AEC with amalgamation. If κ = iκ > ...
متن کاملDownward categoricity from a successor inside a good frame
We use orthogonality calculus to prove a downward transfer from categoricity in a successor in abstract elementary classes (AECs) that have a good frame (a forking-like notion for types of singletons) on an interval of cardinals: Theorem 0.1. Let K be an AEC and let LS(K) ≤ λ < θ be cardinals. If K has a type-full good [λ, θ]-frame and K is categorical in both λ and θ, then K is categorical in ...
متن کامل